Ultrasensitive microarray detection of short RNA sequences with enzymatically modified nanoparticles and surface plasmon resonance imaging measurements.

نویسندگان

  • Wen-Juan Zhou
  • Yulin Chen
  • Robert M Corn
چکیده

A novel multiplexed method for short RNA detection that employs an enzymatic capture reaction onto DNA-modified silica nanoparticles (SiNPs) followed by nanoparticle-enhanced surface plasmon resonance imaging (SPRI) is demonstrated. SiNPs functionalized with 5'-phosphorylated single stranded DNA (ssDNA) are used with T4 RNA ligase to capture various short 20-24 base single-stranded RNA (ssRNA) oligonucleotides from a target solution. The ssRNA-modified SiNPs are collected from the target solution, specifically adsorbed onto a cDNA microarray and then detected with SPRI. The use of DNA-modified SiNPs to capture ssRNA for profiling has several advantages as compared to a planar SPRI surface bioaffinity adsorption format: (i) the target solution is exposed to a larger total surface area for the RNA ligation reaction; (ii) the SiNPs enhance the diffusion rate of the ssRNA to the surface; (iii) the SiNPs can be collected, washed, and preconcentrated prior to detection; and (iv) the ssRNA-modified SiNPs give an enhanced SPRI signal upon hybridization adsorption to the microarray. Our initial measurements demonstrate that this detection method can be used to detect multiple ssRNA sequences at concentrations as low as 100 fM in 500 μL.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Fabrication of DNA microarrays on polydopamine-modified gold thin films for SPR imaging measurements.

Polydopamine (PDA) films were fabricated on thin film gold substrates in a single-step polymerization-deposition process from dopamine solutions and then employed in the construction of robust DNA microarrays for the ultrasensitive detection of biomolecules with nanoparticle-enhanced surface plasmon resonance (SPR) imaging. PDA multilayers with thicknesses varying from 1 to 5 nm were characteri...

متن کامل

Detection of protein biomarkers using RNA aptamer microarrays and enzymatically amplified surface plasmon resonance imaging.

A methodology for the detection of protein biomarkers at picomolar concentrations that utilizes surface plasmon resonance imaging (SPRI) measurements of RNA aptamer microarrays is developed. The adsorption of proteins onto the RNA microarray is detected by the formation of a surface aptamer-protein-antibody complex. The SPRI response signal is then amplified using a localized precipitation reac...

متن کامل

Near infrared surface plasmon resonance phase imaging and nanoparticle-enhanced surface plasmon resonance phase imaging for ultrasensitive protein and DNA biosensing with oligonucleotide and aptamer microarrays.

The techniques of surface plasmon resonance-phase imaging (SPR-PI) and nanoparticle-enhanced SPR-PI have been implemented for the multiplexed bioaffinity detection of proteins and nucleic acids. The SPR-PI experiments utilized a near-infrared 860 nm light emitting diode (LED) light source and a wedge depolarizer to create a phase grating on a four-element single-stranded DNA (ssDNA) microarray;...

متن کامل

Enzymatically amplified surface plasmon resonance imaging method using RNase H and RNA microarrays for the ultrasensitive detection of nucleic acids.

A novel surface enzymatic amplification method that utilizes RNA microarrays in conjunction with the enzyme RNase H is developed for the ultrasensitve detection and analysis of target DNA molecules. The enzyme RNase H is shown to selectively and repeatedly destroy RNA from RNA-DNA heteroduplexes on gold surfaces; when used in conjunction with the label-free technique of surface plasmon resonanc...

متن کامل

Surface Enzyme Chemistries for Ultrasensitive Microarray Biosensing with SPR Imaging

The sensitivity and selectivity of surface plasmon resonance imaging (SPRI) biosensing with nucleic acid microarrays can be greatly enhanced by exploiting various nucleic acid ligases, nucleases, and polymerases that manipulate the surface-bound DNA and RNA. We describe here various examples from each of these different classes of surface enzyme chemistries that have been incorporated into nove...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • Analytical chemistry

دوره 83 10  شماره 

صفحات  -

تاریخ انتشار 2011